Du fait de leur portabilité et de la mobilité des produits dans lesquels ils sont incorporés, les systèmes embarqués évoluent généralement dans de conditions environnementales non déterministes et souvent non maîtrisées. Ils sont exposés à des variations et autres contraintes environnementales susceptibles d'induire des défaillances : vibrations, chocs, variation de température, variations d'alimentation, interférences RF, corrosion, humidité, radiations, … D'où la nécessité de prendre en compte des évolutions des caractéristiques des composants en fonction des conditions environnementales. En même temps que s'accroît leur sophistication, les systèmes embarqués sont utilisés dans des applications de plus en plus critiques dans lesquels leur dysfonctionnement peut générer des nuisances, des pertes économiques ou des conséquences inacceptables pouvant aller jusqu'à la perte de vies humaines. C'est le cas, par exemple, des applications médicales ou celles de transports pour lesquelles une défaillance peut avoir un impact direct sur la vie d'êtres humains. C'est aussi le cas des applications spatiales, souterraines ou sous-marines où la défaillance peut entraîner des conséquences redoutables aussi bien en terme de sécurité qu'au niveau économique. Ce type de systèmes doit garantir une très haute fiabilité et doit pouvoir réagir en cas de panne de l'un de ses composants.